Exploratory omics study reveals potential roles of sigma-2 receptor modulators in AAV1/2A53T-aSyn rat model of Parkinson's disease

Introduction

Synucleinopathies, including Lewy body dementia (DLB) and Parkinson's disease (PD) comprise the second most common neurodegenerative disease worldwide. In synucleinopathies, alpha-synuclein (α Syn) oligometrs cause neuronal dysfunction. Mutations in the α Syn gene, such as A53T, cause familial PD¹. Ectopic expression of human A53T α Syn *in vivo* causes production of toxic α Syn oligomers, resulting in neuroinflammation and loss of dopaminergic neurons^{2,3}. The sigma-2 receptor (S2R) is involved in pathways associated with age-

related disease including autophagy, oxidative stress, and intracellular trafficking. We have shown that S2R modulation *in vitro* reverses α Syn **C** oligomer-induced deficits in neuronal vesicle trafficking⁴. Given this data and S2R's functional overlap with pathways affected in PD, we hypothesized that S2R modulation would alter PD-related transcripts and pathways in vivo.

References:

Acknowledgments: in vivo portion of the study was conducted at Atuka, Inc. (Toronto, Canada) - All animal studies were conducted according to CCAC guidelines and under IACUC-approved Animal Use Protocols (AUPs)

Aidan Reaver¹, Britney N. Lizama, PhD¹, Kiran Pandey, PhD², Duc Duong, PhD³, Nicholas Seyfried, PhD³, Anthony O. Caggiano, MD, PhD¹, Mary E. Hamby, PhD¹ (1) Cognition Therapeutics, Pittsburgh, PA, USA, (2) Emtherapro, Atlanta, GA, USA, (3) Emory University School of Medicine, Atlanta, GA, USA

Proteor

Animals overexpressing mutant αSyn exhibit hallmark features of Parkinson's disease in striatal tissue, notably decreases in dopamine pathway-related proteins

Human A53T-αSyn Protein Levels (Striatum) (ng/mL)				
r	AAV +Veh	AAV +CT1812	AAV +CT2168	
ed	188.34	180.14	182.39	
	64.94	56.03	78.59	

Gene P

Rsad1 A0A8I6

p-value Log2

5.09E-03 3.28

0.96

Proteomics - Top 5 Upregulated Proteins

ein	Protein Name	p-value	Log2FC
37	Prolactin	1.53E-02	1.50
.66	Copine-1	3.35E-02	0.81
20	Conserved oligomeric Golgi complex subunit 7	1.86E-02	0.54
06	Retinol dehydrogenase 7	1.55E-02	0.51
AGR5	Radical S-adenosyl methionine domain containing 1	3.26E-02	0.43

otein	Protein Name	p-value	Log2FC
G2K1R5	CaM kinase-like vesicle-associated protein	7.31E-03	-1.78
4177	Tyrosine 3-monooxygenase	1.75E-03	-1.13
1549	Aldehyde dehydrogenase 1A1	2.14E-04	-1.06
3977	Sodium-dependent dopamine transporter	3.37E-03	-0.97
BRU6	DnaJ homolog subfamily C member 12	3.30E-03	-0.74

vay Map (Proteomics) – A53T-αSyn vs Vector	p-value
ical process: Constitutive and regulated NMDA receptor trafficking	2.50E-05
anscriptional control of cholesterol and FA biosynthesis	3.24E-04
ogical process: Dopamine D2 receptor signaling in CNS	3.98E-04
response: Lectin induced complement pathway	5.32E-04
ogical process: Synaptic vesicle fusion and recycling in nerve terminals	6.39E-04

RNAseg - Top 5 Upregulated Gene

	Calcitonini Teceptor	0.00L-03
iabre	Gamma-aminobutyric acid type A receptor subunit epsilon	1.15E-02
(cnj6	Potassium inwardly rectifying channel subfamily J member 6	2.48E-02
erinc2	Serine incorporator 2	2.55E-02

Protein Name

Prolactin

Striatal Transcripts

Protein Name	p-value	Log
Carbonic anhydrase 3	5.72E-03	-1.
Placenta associated 9	1.27E-02	-1.
Potassium Voltage-Gated Channel Modifier Subfamily S Member 1	2.45E-03	-1.
Kallikrein Related Peptidase 7	1.62E-03	-1.
Transferrin receptor 2	1.76E-03	-1.
	Protein Name Carbonic anhydrase 3 Placenta associated 9 Potassium Voltage-Gated Channel Modifier Subfamily S Member 1 Kallikrein Related Peptidase 7 Transferrin receptor 2	Protein Namep-valueCarbonic anhydrase 35.72E-03Placenta associated 91.27E-02Potassium Voltage-Gated Channel Modifier Subfamily S Member 12.45E-03Kallikrein Related Peptidase 71.62E-03Transferrin receptor 21.76E-03

Pathway Map (RNAseq) – A53T-αSyn vs Vector	p-value
G-protein signaling: CDC42 inhibition and activation	4.57E-04 3.33E-03
Development: Role of CDK5 in the nervous system	2.23E-03
Regulation of metabolism: GLP-1 signaling in beta cells	2.80E-03
Neurophysiological process: Regulation of intrinsic membrane properties and excitability of cortical pyramidal neurons	5.64E-03
Transport: Alpha-2 adrenergic receptor regulation of ion channels	5.82E-03

sion of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson's disease. Acta neuropathol commun, 5 (11).

clein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture, and nigrostriatal degeneration 5 (43). https://doi.org/10.1186/1750-1326-5-43 Limegrover C. R. et al (2021). Sigma-2 receptor antagonists rescue neuronal dysfunction induced by Parkinson's patient brain-derived α-synuclein. Journal of Neuroscience Research, vol. 99, issue 4 (1161-1176).

Figure 2. A) Significant differential protein and RNA expression in striatal tissue of rats expressing mutant αSyn due to CT1812 treatment (p≤0.05); shown as a volcano plot. B) Differentially expressed proteins and RNA (p≤0.05) chosen based on relevance to disease pathology. C) Metacore Pathway Analysis (version 23.1.71200) using significant DEPs and DEGs (p≤0.05); non-relevant disease pathologies were excluded from top 5 list. D) Metacore Pathway Analysis using DEGs found to be significantly altered (p≤0.05) using proteomics and RNAseq (left); Differentially expressed genes identified by both proteomics and RNAseq (p≤0.05) chosen based on relevance to disease pathology.

CT1812 treatment causes proteomic and transcriptomic changes in inflammation and stress response related genes

Striatal Transcripts Upregulated Downregulate

Protein Name	Relevance	p-value	Log2F(
etinol dehydrogenase 7	Steroid metabolism	1.11E-03	-0.82
Catenin alpha-2	Neuron migration/ development	1.24E-03	0.08
cal junction component 1	Cell-cell junctions/	4 04 5 02	0.05

Rhased – Genes of Intelest					
Gene	Protein Name Relevance I		p-value	Log2FC	
Apoa5	Apolipoprotein A5	HDL component/ Triglyceride regulator	1.21E-02	-1.16	
Osgin1	Oxidative stress induced growth inhibitor 1	Oxidative stress/Autophagy	1.44E-03	0.35	
Kcns1	Potassium voltage-gated channel modifier subfamily S member 1	Control of action potentials	6.52E-03	1.14	

Proteomics – Metacore Pathway Analysis

y Map (Proteomics) – A53T-αSyn + CT1812 vs A53T-αSyn	p-value
ological process: Constitutive and activity-dependent synaptic AMPA receptor delivery	1.38E-05
nd survival: Regulation of apoptosis by mitochondrial proteins	6.50E-05
iological process: Constitutive and regulated NMDA receptor trafficking	1.98E-04
ological process: Synaptic vesicle fusion and recycling in nerve terminals	2.84E-04
Transport: Clathrin-coated vesicle cycle	3.68E-04

athway Map – A53T-αSyn + CT1812 vs A53T-αSyn	p-value
RRK2 in neuronal apoptosis in Parkinson's disease	1.30E-02
Signal transduction: ERK1/2 signaling pathway	2.44E-02
ent: EGF-induced proliferation of type C cells in SVZ of adult brain	2.51E-02
Cell adhesion: Tight junctions	3.34E-02
Development: EPO-induced MAPK pathway	3.41E-02

Proteomics-RNAseg Overlap – Genes of Interest

RNAseg – Metacore Pathway Analysis

Pathway Map (RNAseq) – A53T-αSyn + CT1812 vs A53T-αSy

Gene	Protein Name	Relevance	Protein p-value	Protein Log2FC	RNA p-value	RNA Log2FC
Prl	Prolactin	Growth/Immune system growth	8.97E-03	-1.62	1.07E-02	-3.55
Sos2	SOS Ras/Rho guanine nucleotide exchange factor 2	Prolactin signaling/ Immune system	3.59E-02	-0.06	2.23E-02	-0.10
Prdx3	Peroxiredoxin 3	Antioxidant	2.28E-03	0.06	4.81E-02	0.13

PD model

3.67E-04

9.78E-04

1.76E-03

1.87E-03

2.85E-03

- pathway-related proteins compared to control
- CT1812 is currently in Phase 2 clinical trials for dementia with Lewy bodies (NCT05225415) S2R modulator CT2168 increased transcripts/proteins important to the dopamine pathway and decreased transcripts/proteins associated with PD and LDL receptor, which is relevant to S2R mechanism of action Both S2R modulators altered transcripts/proteins involved in signal transductions, the glutamatergic pathway, and reversed transcript/protein alterations seen in the mutant α Syn model
- These findings support the further development of sigma-2 receptor modulators for synucleinopathies

CT2168 treatment causes proteomic and transcriptomic changes in the cholesterol transport pathway and upregulates dopamine pathway-related proteins

ene	Protein Name	Relevance	p-value	Log2FC
nkv	CaM kinase-like vesicle- associated protein	Glutamatergic synapse	1.18E-02	1.56
17a6	Vesicular glutamate transporter 2	Glutamate transporter/ Neurotransmission	1.76E-03	0.14
d2	D(2) dopamine receptor	Dopamine	1.03E-02	0.22

Pathway Map (Proteomics) – A53T- α Syn + CT2168 vs A53T- α Syn p-value

RNAseq – Metacore Pathway Analysis				
Pathway Map (RNAseq) – A53T-αSyn + CT2168 vs A53T-αSyn	p-value			
Protein folding and maturation: Posttranslational processing of neuroendocrine peptides	1.61E-06			
Cell cycle: Role of APC in cell cycles regulation	8.29E-05			
Cell cycle: DNA replication – elongation and termination	1.02E-04			
Immune response: ETV3 affect on CSF-1 promoted macrophage differentiation	3.38E-04			
Cell cycle: Chromosome condensation in prometaphase	4.59E-04			

Development: Estrogen-independent activation of ESR1 and ESR2

SCAP/SREBP transcriptional control of cholesterol and FA biosynthesis

Nicotine signaling in cholinergic neurons

Immune response: Oncostatin M signaling via MAPK

Development: EGFR signaling pathway

Proteomics – Metacore Pathway Analysis

Proteomics-RNAseq Overlap – Metacore Pathway Analysis

Pathway Map – A53T-αSyn + CT2168 vs A53T-αSyn	p-value
Signal transduction: FGFR4 signaling	1.17E-04
nolesterol and sphingolipid transport/Influx in the early endosome in lung (normal and CF)	6.69E-03
Transcription: Ligand-dependent activation of the ESR1/SP pathway	6.92E-03
Immune response: Oncostatin M signaling via MAPK	8.53E-03
egulation of lipid metabolism: Regulation of lipid metabolism via LXR, NF-Y and SREBP	8.76E-03

Proteomics-RNAsea	Overlap –	Genes	of Interest
			•••••••••

• •						
Protein Name	Relevance	Protein p-value	Protein Log2FC	RNA p-value	RNA Log2FC	
Prolactin	Growth/Immune system growth	5.10E-03	-1.58	3.86E-02	-3.40	
ow density lipoprotein. receptor	LDL receptor/S2R- associated	7.06E-03	-0.21	4.19E-02	-0.22	
Listerin E3 ubiquitin protein ligase 1	Parkinson's disease	9.95E-04	-0.04	2.95E-02	-0.12	
	Protein Name Prolactin ow density lipoprotein receptor Listerin E3 ubiquitin protein ligase 1	Protein NameRelevanceProlactinGrowth/Immune system growthow density lipoprotein receptorLDL receptor/S2R- associatedListerin E3 ubiquitin protein ligase 1Parkinson's disease	Protein NameRelevanceProtein p-valueProlactinGrowth/Immune system growth5.10E-03ow density lipoprotein receptorLDL receptor/S2R- associated7.06E-03Listerin E3 ubiquitin protein ligase 1Parkinson's disease9.95E-04	Protein NameRelevanceProtein p-valueProtein Log2FCProlactinGrowth/Immune system growth5.10E-03-1.58ow density lipoprotein receptorLDL receptor/S2R- associated7.06E-03-0.21Listerin E3 ubiquitin protein ligase 1Parkinson's disease9.95E-04-0.04	Protein NameRelevanceProtein p-valueProtein Log2FCRNA p-valueProlactinGrowth/Immune system growth5.10E-03-1.583.86E-02ow density lipoprotein receptorLDL receptor/S2R- associated7.06E-03-0.214.19E-02Listerin E3 ubiquitin protein ligase 1Parkinson's disease9.95E-04-0.042.95E-02	

Figure 3. A) Significant differential protein and RNA expression in striatal tissue of rats expressing mutant αSyn due to CT2168 treatment (p≤0.05); shown as a volcano plot. B) Differentially expressed proteins and RNA (p≤0.05) chosen based on relevance to disease pathology. C) Metacore Pathway Analysis (version 23.1.71200) using significant DEPs and DEGs (p≤0.05); non-relevant disease pathologies were excluded from top 5 list. D) Metacore Pathway Analysis using DEGs (p<0.05) identified using both proteomics and RNAseq (left); DEGs identified by both proteomics and RNAseq ($p \le 0.05$) chosen based on relevance to disease pathology (right).

1.43E-04

2.86E-04

7.61E-04

1.20E-03

1.47E-03

Conclusions

This is the first study, to our knowledge, to elucidate the transcriptomic and proteomic profile of the A53T-αSyn

- Mutant αSyn expression increased inflammatory pathway-related genes/proteins and decreased dopamine
- Sigma-2-receptor (S2R) modulator CT1812 impacted pathways involved in synaptic activity and function and transcripts/proteins known to protect against oxidative stress

