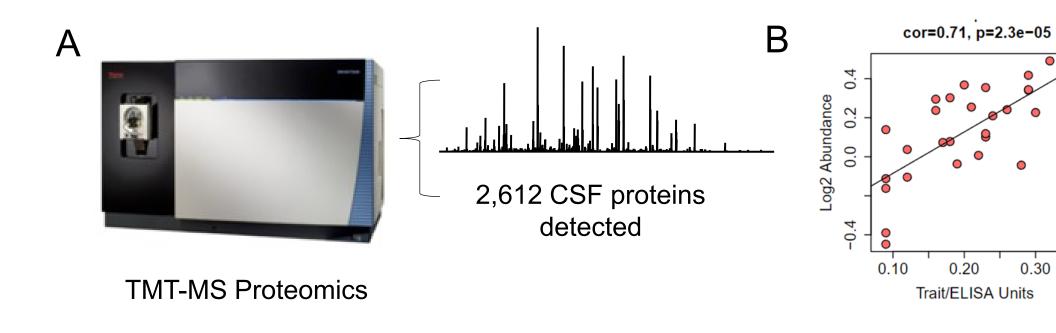
# ANALYSIS OF CSF SAMPLES FROM A PHASE 2 CLINICAL TRIAL IN ALZHEIMER'S PATIENTS SHOW THAT CT1812 CAN MODULATE $\alpha$ -SYNUCLEIN

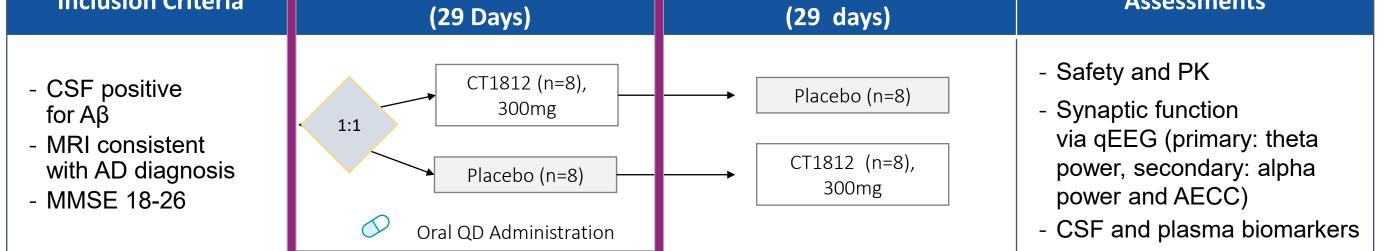
Valentina Di Caro<sup>1</sup>, Kiran Pandey<sup>6</sup>, Duc Duong<sup>6,7</sup>, Nicholas Seyfried<sup>7</sup>, Michael Grundman<sup>5</sup>, Everard G. Vijverberg<sup>2,3</sup>,

Anthony O. Caggiano<sup>1</sup>, Charlotte Teunissen<sup>4</sup>, Mary Hamby<sup>1</sup>

1 Cognition Therapeutics, Inc, Pittsburgh, USA, 2 Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; 4 Department of Laboratory Medicine, VUmc, Amsterdam, The Netherlands; 5 Global R&D Partners, LLC and Department of Neurosciences U of CA, San Diego, CA, USA; 6 Emtherapro Inc, Systems Biology, Atlanta, USA; 7 Emory University School of Medicine, Atlanta, USA

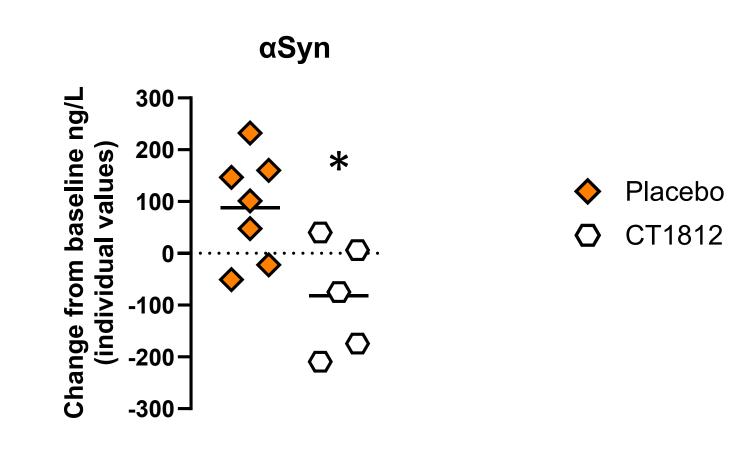

#### INTRODUCTION

The presynaptic protein  $\alpha$ -synuclein ( $\alpha$ Syn), mainly associated with synucleinopathies like Parkinson and dementia with Lewy bodies (DLB), is also involved in the pathophysiology of Alzheimer's disease (AD) and higher levels of  $\alpha$ Syn in the CSF of patients with AD have been linked to cognitive decline. CT1812 is a first-in-class investigational therapeutic in development for AD and DLB<sup>1</sup>. Preclinical evidence indicates that CT1812 can displace toxic amyloid-β oligomers (A $\beta$ O) and  $\alpha$ Syn oligomers from binding to neuronal synapses<sup>2,3</sup>. To understand if our clinical leading candidate, CT1812 can modulate  $\alpha$ Syn, we assessed total  $\alpha$ Syn levels in CSF samples from a Phase 2, single site, double-blind, placebo controlled, cross-over study design trial in patients with mild to moderate AD (SEQUEL-NCT04735536) (Schema 1). To investigate further the biology surrounding  $\alpha$ Syn, Pearson correlation analysis between  $\alpha$ Syn concentrations and the CSF proteome from CT1812-treated only patients was performed to identify proteins highly correlated with the change in  $\alpha$ Syn.


| Inclusion Criteria | Period One | Period Two | Assessments |
|--------------------|------------|------------|-------------|
|--------------------|------------|------------|-------------|

### METHODS

Participants (16) were randomized to receive 29 days of either CT1812 (300 mg, PO, qD) or placebo during the first treatment period. Following a two-week washout, participants then switched treatment for another 29 days period. Total  $\alpha$ Syn in CSF samples was measured by ELISA (Euroimmun) at baseline and after 29 days of treatment and change from baseline calculated. Tandem-mass tag mass spectrometry (TMT-MS) proteomics was performed on CSF collected at the same time points (Schema 2). To identify correlate to  $\alpha$ Syn, Pearson correlation analysis was performed between CSF  $\alpha$ Syn levels and each protein in the CSF proteome ( $p \le 0.05$  and  $p \le 0.01$ ) from CT1812-treated only patients. Pathway analyses were performed using STRING (v12.0) and Metacore (v23.4.71500) using two different p-value criteria ( $p \le 0.05$  and  $p \le 0.01$ ). Data show here are only for day 29 (period 1).




Schema 2. Following CSF sample analysis via TMT-proteomics (A) Pearson correlation analysis was performed between  $\alpha$ Syn and each protein in the CSF proteome (B).



Schema 1: SEQUEL study design.

# CT1812 Decrease Levels of αSyn in CSF After 29 **Days of Treatment**



**Figure 1**: After 29 days (period 1), a statistically significant change from placebo was seen for αSyn in CSF samples of CT1812-treated patients (placebo mean 87.91 ng/L; CT1812 mean -82.32 ng/L; p<0.05 Student's t-test).

| Α | Sets of Proteins Associated with $\alpha$ Syn CSF levels |              |            |           |  |  |
|---|----------------------------------------------------------|--------------|------------|-----------|--|--|
|   | p-value                                                  | Correlates # | Positively | Inversely |  |  |

# **αSyn Correlated Proteins of Interest Connected to AD** Phenotype

RESULTS

| Protein Name                                                  | Link to AD                                                                                                                                        |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Heat shock protein A8<br>(HSPA8)                              | Key role in the homeostasis of tau, superoxide dismutase 1 and $\alpha$ Syn and in the balance between $\alpha$ Syn oligomeric and monomeric form |
| Synapsin II<br>(SYN2)                                         | αSyn oligomers can impair memory by selectively lowering synapsin expression                                                                      |
| Niemann-Pick Disease<br>Type C2 Protein<br>(NCP2)             | Regulates the transport of cholesterol through the late<br>endosomal/lysosomal system, may play disease modifying<br>role in AD                   |
| Leucine Rich Repeat And<br>Ig Domain Containing 1<br>(LINGO1) | Decreases processing of A $\beta$ PP in the amyloidogenic pathway by promoting lysosomal degradation of A $\beta$ PP                              |
| Serpin Family A Member 5<br>(SERPINA5)                        | Associated with hippocampal vulnerability in AD; binds to tau and co-localizes within neurofibrillary tangles                                     |
| Table 4. Osmalatas ta                                         | wown corrected in orthogon the stad and which the                                                                                                 |

**Table 1**: Correlates to αSyn CSF levels in CT1812-treated only patients (Pearson correlation,  $p \le 0.01 r \ge |0.7|$ ) associated to AD phenotype.

# Pathway Analyses Identify Immune Response, **Protein Folding and Maturation Pathways** Significantly Associated to αSyn Correlates

| Top Metacore Pathway Maps, p <u>&lt;</u> 0.05                                           | p-value   |
|-----------------------------------------------------------------------------------------|-----------|
| Immune response-Alternative complement pathway                                          | 4.10E-13  |
| Immune response Classical complement pathway                                            | 1.14E-10  |
| Immune response-Lectin induced complement pathway                                       | 7.94E-10  |
| Protein folding and maturation, posttranslational processing of neuroendocrine peptides | 1.10E-08  |
| Neurophysiological process Synaptic vesicle fusion and recycling in nerve terminals     | 2.02E-07  |
| Top Metacore Pathway Maps, p <u>&lt;</u> 0.01                                           | p-value   |
| Protein folding and maturation-Posttranslational processing of neuroendocrine peptides  | 4.553E-05 |
| Neurophysiological process-Synaptic vesicle fusion and recycling in nerve terminals     | 5.51E-05  |
| Immune response-Classical complement pathway                                            | 6.05E-05  |
|                                                                                         |           |

| p-value            |     | Correlated | Correlated |
|--------------------|-----|------------|------------|
| p <u>&lt;</u> 0.05 | 476 | 187        | 289        |
| p <u>&lt;</u> 0.01 | 188 | 71         | 117        |

| В | Protein | Protein ID | p-value  | αSYN cor. | Protein    | Protein ID | p-value  | αSYN cor. |
|---|---------|------------|----------|-----------|------------|------------|----------|-----------|
|   | PCDHGB5 | Q9Y5G0     | 4.09E-07 | 1.00      | IGKV1D-43  | A0A0B4J1Z2 | 4.46E-07 | -1.00     |
|   | GFER    | P55789     | 6.99E-04 | 1.00      | TNFSF8     | P32971     | 2.55E-05 | -1.00     |
|   | HSPA8   | P11142     | 6.11E-06 | 0.99      | FAM177A1   | Q8N128     | 2.27E-06 | -1.00     |
|   | SYN2    | Q92777     | 6.51E-04 | 0.99      | SIRPB2     | Q5JXA9     | 4.34E-05 | -1.00     |
|   | PLXDC1  | Q8IUK5     | 1.25E-05 | 0.99      | NA         | ApoE2      | 1.04E-04 | -1.00     |
|   | LINGO1  | Q96FE5     | 1.44E-05 | 0.99      | IGKV6-21   | A0A0C4DH24 | 1.13E-04 | -1.00     |
|   | CDH13   | P55290     | 4.36E-05 | 0.99      | B4GALT5    | O43286     | 2.47E-03 | -1.00     |
|   | DCBLD1  | Q8N8Z6     | 6.85E-05 | 0.98      | IGLV3-10   | A0A075B6K4 | 1.90E-04 | -1.00     |
|   | TUBA4A  | P68366     | 2.89E-03 | 0.98      | ADAMTS16   | Q8TE57     | 2.13E-04 | -1.00     |
|   | GLOD4   | Q9HC38     | 1.45E-04 | 0.98      | FLNB       | 075369     | 4.22E-03 | -1.00     |
|   | RAP1B   | P61224     | 1.58E-04 | 0.98      | SNX3       | O60493     | 3.38E-04 | -1.00     |
|   | FREM2   | Q5SZK8     | 1.90E-04 | 0.97      | IGHV3-30-5 | P0DP03     | 4.34E-03 | -1.00     |
|   | CD48    | P09326     | 2.12E-04 | 0.97      | NDNF       | Q8TB73     | 4.75E-03 | -1.00     |
|   | GSS     | P48637     | 2.24E-04 | 0.97      | GAB4       | Q2WGN9     | 4.91E-03 | -1.00     |
|   | SEC14L2 | 076054     | 5.53E-03 | 0.97      | ERMN       | Q8TAM6     | 7.39E-03 | -0.99     |

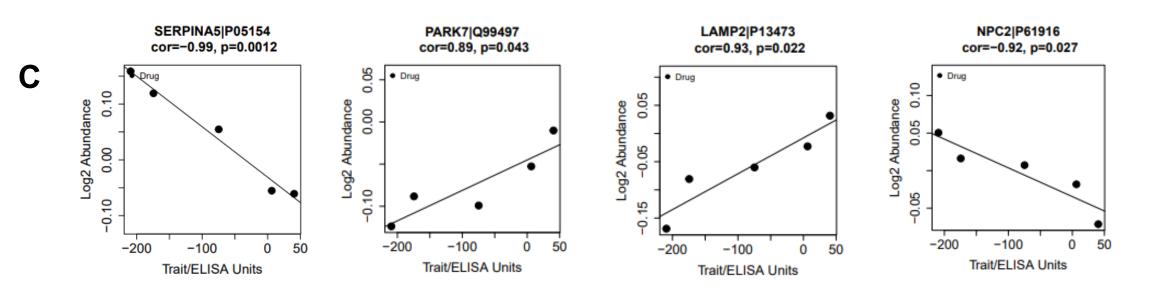
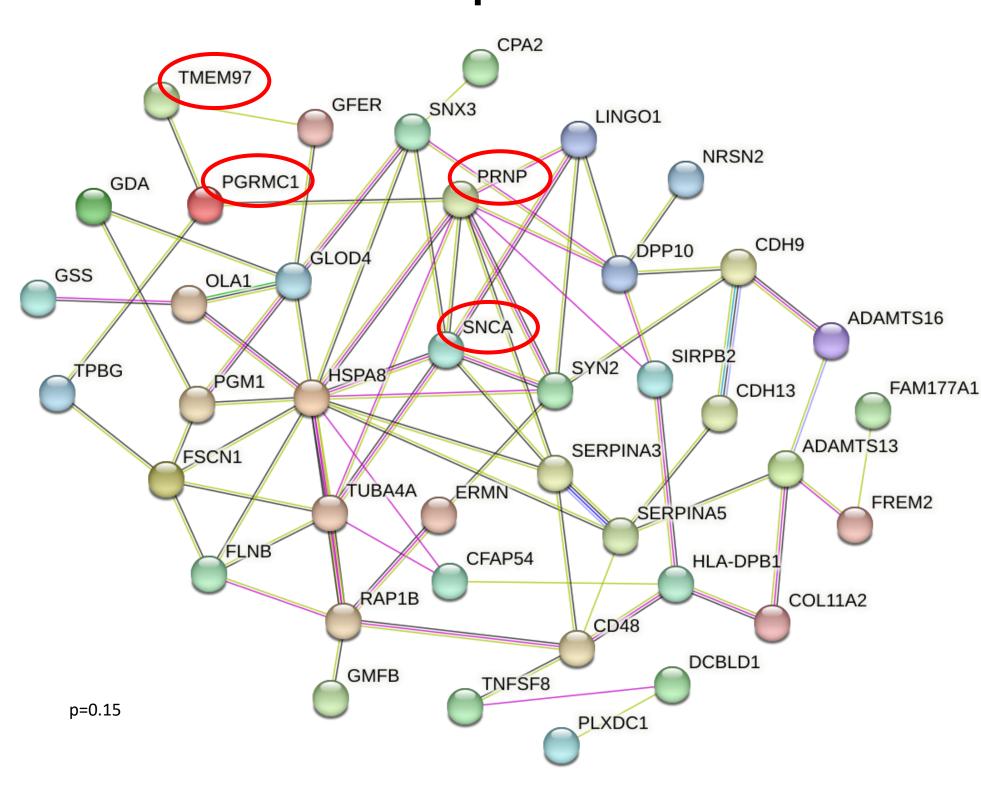




Figure 2: (A) CSF proteins were identified to be significantly correlated using Pearson correlation analyses with  $\alpha$ Syn CSF levels (p<0.05 and p<0.01) in drug treated patients. (B) Topmost directly (red) and inversely (green) CSF proteins corelated to  $\alpha$ Syn are listed (p<0.01). (C) Other proteins of interest correlating with  $\alpha$ Syn (x axis).

**αSyn Correlates are Connected to S2R Complex** Components



**Figure 3**: Protein-protein interaction map using STRING (v12.0) of the top 50 correlates to  $\alpha$ Syn CSF levels in CT1812-treated only patients (p<0.01) r=[0.9]) with the S2R complex components (TMEM97 (S2R)), added to this analysis to understand the relationship to CT1812's mechanism of action through S2R, PRNP and PGRMC1 and  $\alpha$ Syn (SNCA).

| mmune response-Alternative complement pathway | 6.05E-05 |
|-----------------------------------------------|----------|
| Transport RAB3 regulation pathway             | 5.33E-03 |
|                                               |          |

**Figure 4**:  $\alpha$ Syn-correlated proteins (p<0.05; p<0.01; r>|0.7|). were analyzed for pathway enrichment using Metacore (v23.4.71500). Top pathways are listed (non-relevant disease pathologies/organs excluded).

### GO Terms Complement, Synaptic and Dopamine Metabolic Processes are Associated to **αSyn Correlates**

| GO Term ID | Biological Process, p <u>&lt;</u> 0.05                          | Strength | p-value  |
|------------|-----------------------------------------------------------------|----------|----------|
| GO:0048842 | Positive regulation of axon extension involved in axon guidance | 1.37     | 3.37E-02 |
| GO:0045964 | Positive regulation of dopamine metabolic process               | 1.31     | 4.42E-02 |
| GO:0006957 | Complement activation, alternative pathway                      | 1.25     | 4.90E-04 |
| GO:0019835 | Cytolysis                                                       | 1.16     | 2.80E-04 |
| GO:0006958 | Complement activation, classical pathway                        | 1.11     | 1.61E-06 |
| GO:0006956 | Complement activation                                           | 1.1      | 6.81E-09 |
| GO Term ID | Biological Process, p <u>&lt;</u> 0.01                          | Strength | p-value  |
| GO:0061684 | Chaperone-mediated autophagy                                    | 1.64     | 3.92E-02 |

REFERENCES

Complement activation alternative

(COGNITION<sup>®</sup>

Therapeutics

|                                                                                                                                                                   | CONCLUSIONS                                                                                                                                                                                                                        | GO:0      | 0006957   | pathway                                                                                                 | 1.46 | 1.38E-02 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|---------------------------------------------------------------------------------------------------------|------|----------|
|                                                                                                                                                                   | > A significant decrease in CSF total $\alpha$ Syn levels was observed in AD patients after 29                                                                                                                                     | days Go:0 | 0019835   | Cytolysis                                                                                               | 1.31 | 3.51E-02 |
| r Posters on CT1812 by gnition Therapeutics                                                                                                                       | of treatment with CT1812 $\triangleright$ Proteins highly correlated to CSF $\alpha$ Syn levels are associated with AD phenotype                                                                                                   |           | 0043567   | Regulation of insulin-like growth factor receptor signaling pathway                                     | 1.31 | 3.51E-02 |
| <b>04</b> : Plasma Proteomic Analysis from<br>Patients In SPARC Clinical Trial to                                                                                 | pathways related to complement, inflammation, dopamine metabolism and synapse bio                                                                                                                                                  |           | 0006958   | Complement activation, classical pathway                                                                | 1.24 | 4.30E-03 |
| macodynamic Biomarkers of the S2R<br>Modulator CT1812                                                                                                             | $\succ$ Protein-protein interaction mapping show a highly interconnected network with $\alpha$ Syn                                                                                                                                 |           | 0006956   | Complement activation                                                                                   | 1.19 | 6.00E-04 |
| , D. Duong, K. Pandey V. Di Caro, A.<br>O'Dell, C. van Dyck, M. Grundman,<br>ggiano, N. Seyfried, M.E. Hamby                                                      | hub, and illustrate the connectivity with proteins comprising S2R                                                                                                                                                                  |           | 0051965   | Positive regulation of synapse assembly                                                                 | 1.18 | 6.00E-04 |
| act 2964: Identification of New<br>ynamic Biomarkers of CT1812 That<br>th Favorable Functional Connectivity<br>of the Brain<br>K. Pandey, E. Cho, D. Duong, W. de | Findings highlight molecular mechanisms through which CT1812 may affect<br>neurophysiology in Alzheimer's disease and will be validated in upcoming Phase<br>clinical trials with CT1812 in AD (NCT03507790) and DLB (NCT05531656) | 2 leve    | els in CT | RING (v 12.0) pathway analysis of co<br>1812-treated only patients (p <u>&lt;</u> 0.05;<br>by strength. |      | •        |

ClinicalTrials.gov: NCT04735536 Supported by NIA Grant R01AG058710 Corresponding author: mhamby@cogrx.com

V. Di Caro, K. Pandey, E. Cho, D. Duong, W. de Haan, M Grundman, N. Seyfried, A. Caggiano, E. Vijverberg, M. Hamby

Other I

Abstract 2904: Alzheimer's Pa

Identify Pharma

B.N. Lizama, D. Mecca, R. O'D

A.O. Caggia

Pharmacodyna Correlate With

Abstract

Cog

1. Clinical trials NCT03507790, NCT05531656. 2 Izzo N et al. Preclinical and clinical biomarker studies of CT1812: A novel approach to Alzheimer's disease modification. Alz & Dementia 2021. 3 Limegrover CS et al. Sigma-2 receptor antagonists rescue neuronal dysfunction induced by Parkinson's patient brain-derived α-synuclein. J Neurosci Res 2021.