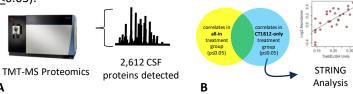
## IDENTIFICATION OF NEW PHARMACODYNAMIC BIOMARKERS OF CT1812 THAT CORRELATE WITH FAVORABLE FUNCTIONAL CONNECTIVITY OF THE BRAIN

Valentina Di Caro<sup>1</sup>, Kiran Pandey<sup>2</sup>, Eunah Cho<sup>1</sup>, Duc Duong<sup>2,3</sup>, Willem de Haan<sup>4,5</sup>, Michael Grundman<sup>6</sup>, Nicholas. Seyfried<sup>3</sup>, Anthony O. Caggiano<sup>1</sup>, Everard G. Vijverberg<sup>5</sup>, Mary E. Hamby<sup>1</sup>


1 Cognition Therapeutics, Pittsburgh, USA, 2 Emtherapro Inc, Atlanta, USA; 3 Emory University School of Medicine, Atlanta, USA; 4 Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; 5 Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; 6 Global R&D Partners, LLC and Dept of Neurosciences U of CA, San Diego, CA, USA;

#### INTRODUCTION

Synaptic function and brain functional connectivity is impaired in Alzheimer's disease (AD). Recently, in the SEQUEL phase 2 clinical trial (NCT04735536) in AD patients, we have shown that our drug candidate, CT1812, can favorably impact the functional connectivity as measured by the quantitative EEG measure Amplitude Envelope Correction (AECc p=0.034)¹. To identify synaptic markers of CT1812 associated with this favorable change, we performed Pearson correlation analyses between multiple EEG parameters and the CSF proteome from SEQUEL.

### **METHODS**

Participants (n=16) received 29 days of either CT1812 (300 mg, PO, qD) or placebo following a two-week washout, then switched treatment for another 29 days period. TMT mass spectrometry proteomics was performed on CSF at baseline and after both treatment periods. Previous correlation analyses were performed to identify molecular correlates of theta and alpha wave power and functional connectivity irrespective of treatment<sup>2.</sup> Here to identify CT1812-driven correlates that may be pharmacodynamic biomarkers of CT1812 linked to EEG parameters, we performed Pearson correlation analyses on change from baseline values across multiple EEG parameters and each protein in the CSF proteome (p<0.05) from CT1812 treated only patients. Comparative analyses were performed across EEG parameters followed by pathway analysis using STRING (p<0.05).



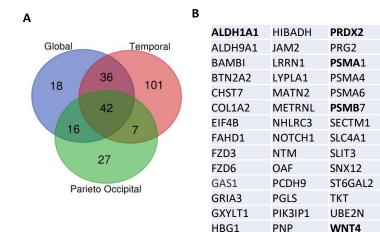
**Schema 1.** (A) Following CSF sample analysis via TMT-proteomics (B) Pearson correlation analyses were performed between multiple AECc parameters and each protein in the CSF proteome . Proteins determined to be correlates only in the CT1812-treated group (outer portion of blue circle) were subject to pathway analyses.

### RESULTS

# Sets of Proteins and Biological Processes Associated with Global Alpha AECc

| ~       | <u> </u> |          |      |         |         |          |       |
|---------|----------|----------|------|---------|---------|----------|-------|
| Gene    | Prot ID  | p value  | cor  | Gene    | Prot ID | p value  | cor   |
| HBG1    | P69891   | 1.71E-03 | 0.88 | PIK3IP1 | Q96FE7  | 2.35E-04 | -0.83 |
| SLC4A1  | P02730   | 2.70E-03 | 0.86 | MALRD1  | Q5VYJ5  | 9.07E-03 | -0.77 |
| ALDH1A1 | P00352   | 7.04E-04 | 0.79 | BTN2A2  | Q8WVV5  | 1.28E-03 | -0.77 |
| MATN2   | 000339   | 1.37E-03 | 0.77 | BAMBI   | Q13145  | 2.73E-03 | -0.74 |
| NDRG1   | Q92597   | 1.65E-02 | 0.76 | METRNL  | Q641Q3  | 2.93E-03 | -0.73 |

| 2 |            |                                          |          |          |
|---|------------|------------------------------------------|----------|----------|
| • | term ID    | term description                         | strength | p value  |
|   | GO:0005584 | Collagen type I trimer                   | 2.25     | 2.19E-02 |
|   |            | Proteasome core complex, alpha-subunit   |          |          |
|   | GO:0019773 | complex                                  | 1.83     | 5.00E-03 |
|   | GO:0005583 | Fibrillar collagen trimer                | 1.65     | 1.06E-02 |
|   | GO:0005839 | Proteasome core complex                  | 1.55     | 2.20E-03 |
|   | 60.0005700 | Endantamia astindus lumas                | 0.00     | 4 505 02 |
|   | GO:0005788 | Endoplasmic reticulum lumen              | 0.66     | 4.50E-02 |
|   | GO:0034774 | Secretory granule lumen                  | 0.65     | 4.89E-02 |
|   | GO:0031012 | Extracellular matrix                     | 0.63     | 3.50E-03 |
|   | GO:0062023 | Collagen-containing extracellular matrix | 0.6      | 4.89E-02 |
|   | GO:0070062 | Extracellular exosome                    | 0.53     | 7.87E-10 |
|   |            |                                          |          |          |


Fig 1. (A) Topmost directly (red) and inversely (blue) CSF proteins correlated to global alpha AECc are listed (p≤0.05). In bold are proteins associated with AD phenotype. B) STRING pathway analysis to identify top biological processes associated to global alpha AECc was performed for a list of 160 proteins (p≤0.05) correlated only in the CT1812-treated group. GO terms sorted by strength.

## CONCLUSION

Potential CT1812 molecular correlates to parameters of brain activity as assessed via EEG and may be surrogate candidate biomarkers of an impact of CT1812 on brain activity were identify

These findings may support the clinical development of therapeutics that impact functional connectivity or synaptic activity.

# Proteins Commonly Associated Across Multiple alpha AECc Parameters



C

| term ID    | term description                       | strength | p value  |
|------------|----------------------------------------|----------|----------|
| GO:0005615 | Extracellular space                    | 0.44     | 2.60E-03 |
|            | Proteasome core complex, alpha-subunit |          |          |
| GO:0019773 | complex                                | 2.25     | 4.30E-04 |
| GO:0070062 | Extracellular exosome                  | 0.58     | 4.30E-04 |
| GO:0031982 | Vesicle                                | 0.44     | 4.30E-04 |
| GO:0005576 | Extracellular region                   | 0.43     | 4.30E-04 |
| GO:0005839 | Proteasome core complex                | 1.97     | 3.70E-04 |

**Fig 2.** Venn diagram (A) and list of 42 (B) commonly correlated proteins across global, temporal and parieto-occipital alpha AECc (p≤0.05). (C) STRING Pathway analysis indicated an impact on proteasomal (PSMA, PSMB), extracellular exosomal (WNT4, ALDH1A1) and vesicular (PRDX2) biologies.

ClinicalTrials.gov: NCT04735536
Supported by NIA Grant R01AG058710
Corresponding author: vdicaro@cogrx.com

REFERENCES

 W. de Haan, A.O. Caggiano, P. Scheltens, M. Grundman, E.P. Scheijbeler, M.E. Hamby, E.G.B. Vijverberg. A Pilot Electroencephalography (EEG) Study to Evaluate the Effect of CT1812 Treatment on Synaptic Activity in Subjects with Mild-to-Moderate Alzheimer's Disease. JAPAD Vol.10. Suppl. 2023

V. Di Caro, K. Pandey, B. Lizama, E Cho, D. Duong, Willem de Haan, M Grundman, N. Seyfried, A. Caggiano, Everard G.N. Vijverberg, M. Hamby. Proteomic analysis in a phase 2 clinical trial studying ct1812 to identify csf and plasma pharmacodynamic biomarkers and molecular correlates of brain activity in Alzheimer's patients. JAPAD Vol10, Suppl 1, 2023

