CSF Phosphoproteomics Biomarker Analysis from the Phase 2 Clinical Trial SHINE to Elucidate the Role of CT1812 in Alzheimer's Disease

<u>Eunah Cho, PhD¹, Jill Caldwell¹, Kiran Pandey, PhD², Duc M. Duong, PhD³, Anthony O. Caggiano, MD, PhD⁴, Valentina Di Caro, PhD¹ and</u> Mary E. Hamby, PhD¹

(1) Cognition Therapeutics, Inc., Pittsburgh, PA, USA, (2) Emtherapro, Atlanta, GA, USA, (4) Cognition Therapeutics, Inc., Purchase, NY, USA

Methods

Key takeaway: For the first time we showed that the S2R modulator, CT1812 impacts phosphorylation of AD-related proteins (e.g. APOE, CHGB) in CSF samples from Phase 2 clinical trials for Alzheimer's disease.

Introduction

The sigma-2 receptor (S2R) modulator, CT1812, is allosteric Aβ oligomer antagonist currently in Phase 2 clinical trials¹ for Alzheimer's disease (AD). Preclinical and clinical studies have shown that CT1812 displaces AB oligomers from synapses² which may facilitate clearance of AB oligomers in the cerebrospinal fluid, restoring cognitive performance in a transgenic mouse model of AD³.

To investigate the mechanism of action of CT1812 and enable biomarker discovery, a phosphoproteomic analysis of CSF samples from SHINE-A was performed. SHINE is a Phase 2 randomized, double-blind, placebo-controlled trial to assess the safety and tolerability of two doses of CT1812 for 6 months in mild-tomoderate AD patients (NCT03507790), and an interim analysis was performed on the first 24 patients enrolled (SHINE-A).

Results

Figure 1. (A) Volcano plots to visualize the global phosphoproteomics change between CT1812treated and placebo samples. Each data point in the scatter plot represents a protein, $p \le 0.1$. (B) Identified 8 phosphoproteins, from 14 phosphopeptides, altered in SHINE-A CSF samples. Representative boxplots of the identified phosphopeptides involved AD-related proteins highlighted in blue (p≤0.1). (C) Protein-protein interaction map with S2R complex components via STRING (v12.0). TMEM97 (S2R), PRNP, and PGRMC1 were added to understand how they interacted with the identified proteins (list in B).

Pathways Related to Aβ and Lipoprotein are Impacted by CT1812 in CSF of Treated-Patients

GO terms	Term description	Strength		
1902998	Positive regulation of neurofibrillary tangle assembly	2.34		
1905908	Positive regulation of amyloid fibril formation	2.21		
0032805	Positive regulation of LDL particle receptor catabolic process	2.16		
1902947	Regulation of tau-protein kinase activity	1.82		
1900221	Regulation of amyloid-beta clearance	1.53		
N.B. Top 5 most relevant GO terms were selected.				

Figure 2. STRING pathway analysis (v12.0) of phosphoproteomics data with total 206 phosphopeptides (91 phosphoproteins). GO=gene ontology.

p-value

2.08E-02

1.70E-03

2.81E-02

8.80E-04

2.15E-02

CT1812 Treatment Altered Proteins' Phosphorylation and Abundance

Figure 3. (A) Venn diagram to show overlapping proteins between SHINE-A phosphoproteins and differentially abundant proteins ($p \le 0.1$). (B) p-value and fold change (Log2FC) for the 2 common proteins.

Correlated Phosphopeptides with CSF A*β***42 Levels** and ADAS-Cog-11 Score were Identified

Figure 4. Comparative analysis between phosphopeptides correlates with CSF Aβ42 levels and ADAS-Cog-11 score in CT1812-treated group only by Pearson's correlation analysis. (A) Venn diagram to show common correlates ($p \le 0.05$). (B) List of correlated phosphoproteins. (C) and (D) Representative scatter plots of correlated phosphopeptides with A\u00b842 level and ADAS-Cog-11 score, respectively ($p \le 0.05$, $r=\pm|0.75|$).

Conclusions

- particle receptor catabolic processes, and tau-protein kinase activity.
- CT1812 is an investigational therapeutic that has not been approved for any use by the US Food and Drug Administration

roteome	Proteome		
Log2FC	p-value	Log2FC	
0.22	8.50E-02	-0.14	
-0.70	8.97E-02	-0.34	

	UniProt ID
ein	P02765
	014791
	P05060
bitor heavy chain H2	P19823
ing protein 2	Q6UX71
rotease inhibitor	Q9UK55
	Q14515
	P10451
	P37837

Major AD-Related Pathways and Four Phosphoproteins **Replicated in SPARC, an Independent Cohort**

• 18 peptides (13 phosphoproteins) met the significance threshold of $p \le 0.05$ for differential abundance. • 35 peptides (23 phosphoproteins) met the significance threshold of p ≤ 0.1 for differential abundance.

C.							
			10	Gene	Phospho-residue	Protein name	UniProt ID
	4	4	19	ΑΡΟΕ	T212	Apolipoprotein E	P02649
				CHGB	S259, S263, S130	Secretogranin-1	P05060
				SPARCL1	S90	SPARC-like protein 1	Q14515
				SPP1	T185, S280, S303	Osteopontin	P10451
	SHINE-/	A	SPARC (23)				
D.	Baseline Cha	aract	eristics an	d Demographic	CS		

		SHINE-A	SPARC
Age (years)	mean, SD	71.7 (7.1)	70.0 (8.8)
Gender	% female	62.5	48
Race	White (%)	95.8	96
Weight (kg)	mean, SD	70.25 (14.8)	79.0 (12.1)
BMI (kg/m²)	mean, SD	26.21 (5.0)	27.1 (4.5)
ApoE4 positive (+/+, +/-)	%	58.3	78
MMSE at baseline	mean, SD	21.1 (3.57)*	22.6 (1.92)
Anti-dementia drugs at baseline (AChE inh / memantine)	%	54.2	87

*Weighted average calculation from the data was used to compute this number. SHINE-A MMSE at baseline was not calculated for total subjects, only all CT1812 vs placebo.

Figure 5. (A) Volcano plots to visualize the global phosphoproteomics change between CT1812treated and placebo samples in the SPARC trial. Each data point in the scatter plot represents a protein, $p \le 0.1$. (B) STRING pathway analysis (v12.0) of phosphoproteomics data with total 303 phosphopeptides (140 phosphoproteins). GO=gene ontology. (C) Venn diagram to show overlapping phosphorylated proteins by CT1812 between SHINE-A and SPARC trials, and the list of common phosphoproteins ($p \le 0.1$). AD-related proteins highlighted in blue. (D) Baseline Characteristics and Demographics to show comparability between cohorts.

• The S2R modulator CT1812 mediates AD-related proteins' phosphorylation in CSF samples from Phase 2 clinical trials for Alzheimer's disease. Pathways enriched by CT1812 in SHINE-A are related to vesicle trafficking, neurofibrillary tangle assembly, amyloid fibril formation, low-density lipoprotein

• Identified phosphopeptides were correlated with Aβ42 levels and ADAS-Cog-11 score in participants treated with CT1812 in SHINE-A. Altered phosphoproteins by S2R modulator CT1812 in SHINE-A replicated in an independent cohort, SPARC.

> References: 1. Clinical trials NCT03493282, NCT03507790., 2. Izzo NJ et al., Alzheimer's Dement. 2021 Aug 17(8):1365-1382., 3. Izzo NJ et al., PLoS One. 2014 Nov 12;9(11):e111898.

scription	Strength	p-value
regulation of neurofibrillary ssembly	2.15	2.39E-02
regulation of amyloid fibril n	2.02	2.30E-03
egulation of LDL particle catabolic process	1.97	3.40E-02
egulation of tau-protein ctivity	1.78	5.40E-03
-density lipoprotein particle ng	1.67	8.20E-03

N.B. Top 5 most relevant GO terms were selected

