Exploratory CSF Proteomics Biomarker Outcomes of The Phase 2 Clinical Trial SHINE to Assess The Effects of CT1812 in Alzheimer's Patients

Valentina Di Caro, PhD¹, Britney N. Lizama, PhD¹, Eunah Cho, PhD¹, Duc Duong, PhD², Kiran Pandey, PhD³, Kaj Blennow⁴, Henrry Zetterberg⁴, Allan Levey², Charlotte Teunissen⁵, Anthony O. Caggiano, MD, PhD¹, Nicholas Seyfried, PhD² and Mary E Hamby, PhD¹ (1) Cognition Therapeutics, Pittsburgh, PA, United States of America, (2) Emory University School of Medicine, Atlanta, GA, United States of America, (3) Emtherapro Inc, Systems Biology, Atlanta, GA, United States of America, (3) Emtherapeutics, Pittsburgh, PA, United States of America, (3) Emtherapeutics, Pittsburgh, PA (4) Department of Psychiatry and Neurochemistry, University of Gothenburg, Sweden, (5) Department of Laboratory Medicine, VUmc, Amsterdam, The Netherlands.

affected by CT1812.

Background

SHINE (NCT03507790, COG0201) was a Phase 2 randomized, double-blind, placebo-controlled 6-month trial, conducted to study the effect of the experimental, sigma-2 receptor (S2R) modulator, CT1812, an Aß oligomer antagonist, in patients with Alzheimer's (AD). An unbiased assessment of CSF proteomes from the patients that completed the SHINE trial was performed to identify pharmacodynamic (PD) biomarkers of target/pathway engagement and disease modification for CT1812.

Results

Brain Network Analysis Support Role for CT1812 Pharmacodynamic Biomarkers at Synapses

Figure 1. Differential abundant analysis of CSF from AD patients given for 6 months vs placebo. A) Volcano plot illustrating the total of 87 differ abundant proteins at $p \le 0.05$. B) Differentially abundant proteins (CT) placebo; $p \le 0.05$) were mapped to 44 previously established prote expression network modules built from samples from healthy indiasymptomatic and symptomatic AD patients¹ (top 15 shown here).

Pathway Analysis Identify Protein Folding, Immune Response and Oxidative Stress Pathways Significantly Altered in CSF

Top MetaCore Pathway Maps (CT1812 vs Placebo p ≤ 0.05)	p-value
Protein folding and maturation-Angiotensin system maturation	9.22E-11
G-protein signaling-RhoA inhibition	6.53E-04
Immune response - Antigen presentation by MHC class II	3.02E-03
Development-Regulation of cytoskeleton proteins in oligodendrocyte differentiation and myelination	3.32E-03
Oxidative stress -Role of Sirtuin1 and PGC1-alpha in activation of antioxidant defense system	3.48E-03
Signal transduction-Angiotensin II/AGTR1 signaling via Notch, Beta-catenin and NF-kB pathways	7.25E-03

N.B. non-relevant disease pathologies/organs excluded

Figure 2. Differentially abundant proteins in CSF samples from AD patients given CT1812 vs placebo ($p \le 0.05$) were analyzed for pathway enrichment using MetaCore.

Key Takeaway: CSF biomarker findings of the SHINE trial shed light on potential CT1812 surrogate biomarkers such as CLU and SERPINA3 and biological pathways (e.g. vesicle trafficking)

Objectives • Safety/tolerability Principal cognitive measure: ADAS-Cog11 • Exploratory : ADCS-ADL & CGIC NTB MMSE Biomarkers (CSF/Plasma)

Methods

Workflow

TMT-MS Proteomics

Mass Spectrometry Analyses

GO Terms Vesicle and Secretory Granule are Associated with CT1812 Pharmacodynamic Biomarkers

GO Te	ms Term description	Strength	p-va
007006	Extracellular exosome	0.74	6.82E
000561	Extracellular space	0.60	1.82E
003198	Vesicle	0.50	1.37E
003014	Secretory granule	0.68	5.83E
009950	Secretory vesicle	0.62	1.41E
003477	Secretory granule lumen	0.90	2.43E
003042	Axon	0.59	7.60E
N.В. Тор	7 most relevant GO terms were selected.		1
D.	PGAM2 SH3BGRL3 SH3BGRL3 DDAH1 L PRP PGD ARHGDIB ARF3 ARF3 AGT ECM2 CO	AMA5 ADAMTS2 ADAMTS2 ARSG	
D.	PRP PRP PGD CAT SH3BGRL3 ARF3 PGD CAT SH3BGRL3 ARF3 PGD PGD CAT SH3BGRL3 ARF3 PFN1 TPM1 SH3BGRL3 ARF3 PFN1 TPM1 RHOA VWF FABP1 CALM2 ST3GAL6 WDR1 MYH9	AMA5 ADAMTS2 AL6A3 ARSG N5 (SEMA6A)	
D .	PNP PGD CAT S GSS GSR CALM2 PFN1 PFN1 PGD CAT S GSS GSR CALM2 PFN1 PFN1 PFN1 PFN1 PFN1 PFN1 PFN1 PFN1	AMA5 ADAMTS2 ARSG ARSG FUT11 SEMA6A AA IFI6 IFI30	
	PRP PRD CAT PGD CAT PGD CAT PGD CAT PGD CAT PGD CALM2 PFN1 TPM1 PFN1 TPM1 PFN1 TPM1 PFN1 TPM1 PFN1 TPM1 PFN1 TPM1 RHOA VWF FABP1 CL CAT CALM2 PFN1 TPM1 RHOA VWF FABP1 CL CAT ST3GAL6 ST3GAL6 CALM2 PFN1 TPM1 RHOA VWF CAT ST3GAL6 CALM2 PFN1 TPM1 RHOA CL CAT CL CAT CALM2 CL CAT CALM2 CL CAT CALM2 CL CAT CALM2 CL	AMA5 ADAMTS2 ARSG ARSG FUT11 SEMA6A AA IFI6 IFI30 A3 MASP1	

Figure 3. Differentially abundant proteins in CSF samples from C11812 vs placebo $(p \le 0.05)$ were analyzed for **A**) gene ontology (GO) cellular components analysis using STRING (GO terms sorted by p-value). **B)** STRING protein-protein interaction map to show protein associated with GO terms: "vesicle", in red, and "secretory granule", in blue (medium confidence; proteins not connected not visualized).

Conclusions

- in disease dysregulation.
- immune response, oxidative stress and vesicle trafficking.
- change towards normalization by 6 months treatment with CT1812.

Tandem-mass tag mass spectrometry (TMT-MS) CSF proteomics was performed on baseline and end of study samples to test the effects of two doses of CT1812 compared to placebo in mild to moderate AD patients.

Proteomic analysis from the first 24 participants was recently published². Raw protein abundance data from all participants were combined, processed and normalized to remove batch effects before exploring effect of treatment. Change from baseline was calculated for participants for whom there were available CSF samples at the time of this analysis (N=45), and differential abundance analysis (CT1812 vs placebo) was performed to assess treatment effects followed by brain network mapping, Gene Ontology, and pathway analyses using STRING (v12.0) and MetaCore (24.2.71700) using p-value criterium p≤0.05.

Β.

Candidate Disease Modification Biomarkers Identified: Proteins Dysregulated in AD Normalized with CT1812

Figure 4. Within-study comparisons to CSF protein levels in reference standards (Emory ADRC AD and control) enabled comparison of the SHINE AD cohort to well-characterized AD and non-demented control CSF. A) Representative box plots to illustrate proteins significantly increased in AD compared to control CSF that are significantly downregulated in CT1812 vs placebo. B) 8 proteins are significantly (p≤0.05) normalized towards control with CT1812 (log2 change in abundance in AD vs control (blue) and CT1812 vs placebo (purple)).

Pharmacodynamic biomarkers of CT1812 are identified, such as CLU, DDAH and SERPINA3, which may reflect improvement

Brain network mapping and pathway analysis of differentially abundant proteins supports role of CT1812 in synaptic biology,

Comparative analysis to reference CSF standards identifies proteins disrupted in, or genetically linked to, AD that positively

• This data extends our knowledge from previously reported analysis² on how CT1812 can effectively change the patient proteome and provides evidence that the S2R modulator, CT1812 may be a promising disease modifying approach to AD.

SHINE

Monday-784

COGNITIONTM Therapeutics